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INTRODUCTION

Angiogenesis, the formation of new blood vessels, is a requirement for malignant tumor
growth and metastasis (1-3). In the absence of angiogenesis, local tumor expansion is
suppressed at a few millimeters and cells lack routes for distant hematogenous spread.
Clinical studies have demonstrated that the degree of angiogenesis is correlated with the
malignant potential of several cancers, including breast cancer and malignant melanoma (4-
7).

Integrin function is regulated by cytokines and other soluble factors in a variety of biological
systems. Most commonly, exposure to such factors leads to conformational alterations that
result in changes in the activation state of the receptors. Changes in integrin-dependent
adhesion ultimately activates various complex signal transduction pathways. Cytoplasmic
domains are key regulators of integrin function (8-14). Although the cytoplasmic domains of
the various B subunits share similar primary structures, they differ in certain functional
characteristics, since they are responsible for the regulation of receptor distribution and
recruitment to the focal adhesion sites (15,16). Thus, B chain cytoplasmic domains are
critical for integrin-mediated signaling into the cell (outside-in signaling) and activation of
integrin-ligand binding activity (inside-out signaling) (9, 17-19).

Several lines of evidence have implicated the integrins owvB83 and cvB5 in the angiogenic
process. It has been shown that ouv integrins are selectively expressed in angiogenic
vasculature but not in normal vasculature (20,21). Moreover, cv integrin antagonists can
block the growth of neovessels through induction of endothelial cell apoptosis (22-26).
Concordant with these findings, it appears that two distinct cytokine-dependent pathways that
lead to angiogenesis depend on specific av integrins. Angiogenesis initiated by bFGF can be
inhibited by an anti-ovB3 blocking antibody, whereas VEGF-mediated angiogenesis can be
prevented by a blocking antibody against otvB5.

Although both av integrins bind to vitronectin, they are likely to mediate different post-
ligand binding events. For instance, the integrin a.vB5 fails to promote cell adhesion,
spreading, migration and angiogenesis in the absence of exogenous soluble factors. On the
other hand, the atvB3 can induce such events without additional stimulation by cytokines
(27-29). Experiments designed to study the molecular basis for cytokine regulation of avB5
function have shown that upon binding to immobilized vitronectin, inactivated avBS is barely
detectable in association with actin, o-actinin, talin, tensin, p130°* and vinculin. In contrast,
owvB3 induces the localized accumulation of such molecules. Upon activation of PKC, awvB5
can then behave similarly to aivB3, but can not recruit talin (28). Moreover, calphostin C, an
inhibitor of PKC, appears to block angiogenesis mediated by ovB5, but not aivB3 (29). These
observations suggest that PKC activation probably affects the conformation and/or
phosphorylation state of the B5 cytoplasmic domain. Therefore, cellular events mediated by
owvB3 or avB5 are clearly controlled by different mechanisms (reviewed in 30-33).

Little is known about molecules associated to the cytoplasmic domains of 3 or B5 chain.
Two-hybrid screenings with the 83 cytoplasmic domain provided evidence for a specific
interaction between the 33 cytoplasmic domain and B3-endonexin (34,35). A few other
proteins have been reported to interact with B integrin cytoplasmic domains in general: talin
(36), filamin (37), o-actinin (38,39), focal adhesion kinase (40) and the serine/threonine
kinase ILK (41), and skelemin (42). Many studies suggest that the molecules which
associate with either B3 or B5 after the angiogenesis switch is triggered are different. We
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hypothesize that the assembly of specific molecules associating with the respective
cytoplasmic domains may explain their selective signaling properties.

PROPOSAL BODY
The tasks approved for this proposal are listed below:

Task 1. To select peptides that bind specifically to 83 or to B85 integrin cytoplasmic
domains. (Months 1-12)

- Construction of phage display peptide libraries and panning on B3 and B5 cytoplasmic
domain fusion proteins.
- Characterization of B3 and B5 cytoplasmic domain-binding phage

Task 2. To investigate whether phosphorylation events can modulate the interaction of
the selected peptides with integrin cytoplasmic domains. (Months 13-24)

- Biopanning using phosphorylated libraries

- Binding assays to investigate the affinity of novel phosphorylated peptides

- Investigate if the B3 binding peptides already isolated may be specifically
phosphorylated in vitro by known protein-kinases involved in classical signal
transduction pathways.

- Evaluate the specificity and affinity of the phosphorylated peptides

Task 3. To determine the biological properties of the cytoplasmic domain-binding

peptides. (Months 25-36)

- Microinjection of cells with integrins 83 and B85 cytoplasmic domain-binding peptides
after stimulation by selected angiogenic factors.

- Cell adhesion, migration and proliferation studies

In the following pages, we report in significant progress on each specific aim during
the past year.

We offer experimental evidence to support the rationale and feasibility of this proposal.
We introduce the peptide sequences that have been isolated after panning of phage
libraries with the cytoplasmic domain of 83 and B5.

First, we show data related to the specificity and binding properties of the peptides,
including the ones isolated from Tyr-containing peptide libraries. Second, we show
results from homology searches using the most promising peptides, and describe the
development and testing of anti-peptide antibodies.
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Third, we demonstrate that the penetratin peptide chimeras are internalized by tumor and
endothelial cells. Finally, we present functional data that strongly support the notion that
our peptides affect integrin function in a selective, specific and dose-dependent fashion.

Phage display library screenings produce peptides that interact selectively with integrin
cytoplasmic domains

We have successfully panned phage display peptide libraries to identify peptides that
interact with the cytoplasmic domain of 83 and/or B5 subunits.

Panning of phage peptide libraries on 83 or B85 cytoplasmic domains.

We have isolated 83 and B85 cytoplasmic domain-binding peptides, by screening multiple
phage libraries with recombinant GST fusion proteins that contain either GST-B3cyto or
GST-B5cyto coated onto microtiter wells. Immobilized GST was used as a negative
control for enrichment during the panning on each cytoplasmic domain. Phage were
sequenced from randomly selected clones after three rounds of panning as described
elsewhere (43-45). We successfully isolated distinct sequences that interact specifically
with the B3 or with the B5 cytoplasmic domains (Tables 1 and 2). Randomly selected
clones from rounds II and III were sequenced. Amino acid sequences of the phagemid-
encoded peptides were deduced from nucleotide sequences. The most frequent motifs
found after panning with the indicated libraries are shown. The ratios were calculated by
dividing the number of colonies recovered from 33-GST-coated wells and those
recovered from GST or BSA.

Table 1. Sequences displayed by phage binding to 3 integrin cytoplasmic domain; Table 2 Sequences
displayed by phage binding to BS5 integrin cytoplasmic domain.

Table 1 Table 2

PEPTIDEMOTIE __ 83/GST RATIO  B3/BSA BATIQ PEPTIDE MOTIF __ G5/GST RATIO  BS/BSA RATIO

CXoLi Pool Cyelc librari

CEQRQTQEGC 4.3 14 CYIWPDSGLC 52 193

CARLEVLLPC 2.8 18.7 CEPYWDGWFC 3.1 400
CKEDGWLMTC 23 836

X YX.Library CKLWQEDGY 1.8 665

YDWWYPWSW 5.6 163 CWDQNYLDDC 1.5 100

GLDTYRGSP 41 48

SDNRYIGSW 33 32 X.YX, Library.

YEWWYWSWA 22 281 DEEGYYMMR 115 29

KVSWYLDNG 21 20 KQFSYRYLL 45 8

SDWYYPWSW 21 157 VVISYSMPD 38 28

AGWLYMSWK 1.8 24 SDWYYPWSW 24 304
DWFSYYEL 1.7 153

Pool Cyclic Librmri

CFQNRC 3.1 16

CNLSSEQC 27 62

CLRQSYSYNC 24 3.2

selected on GST-B5cyto revealed several peptide motifs, as indicated in Table 3. Ratios
were calculated as described.

The specificity of the interaction with 83 or B5 cytoplasmic domains was determined by
calculating the ratios by using the number of phage bound to the cytoplasmic domain
containing-fusion proteins (83 or 85) and GST alone (the negative control). Figure 1
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shows the results from binding assays performed with the GST-B3cyto binding phage.
We have tested six phage that display the motifs more frequently found during the second
and third rounds of panning. Each panel shows the results from binding assays for the
phage displaying different peptides that bind to the 83 cytoplasmic domain, as indicated.
Insertless phage or unselected libraries were used as negative controls and do not show
binding above background. Two plating dilutions are shown for each assay.

A similar strategy was used to determine the specificity of each phage isolated in the
screenings involving the B5 cytoplasmic domain fusion protein. The binding assays were
performed with individually amplified phage. Figure 2 shows the results from binding
assays performed with B5 cyto binding phage. We have tested four phage displaying the
motifs that were found more frequently during the second and third rounds of panning.
Each panel shows the binding assays for the phage displaying peptides that bind to the B5
cytoplasmic domain. Insertless phage or unselected libraries were used as negative

controls and do not show binding above background in these assays.
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Figure 1. Binding of 3
cytoplasmic domain-
selected phage to
immobilized proteins.
GST fusion proteins or GST
alone were coated on
microtiter

wells at 10 pg/ml and used
to bind phage expressing
the peptides shown inTable
2 (each phage is identified
by the peptide sequence it
displays, i.e.
GLDTYRGSP;
YDWWYPWSW;
CLRQSYSNCG;
SDNRYIGSW;
CEQRQTQEGC;
CFQNRC). The data
represent the mean colony
counts from triplicate wells,
with standard error less than
10% of the mean.

To determine

whether the binding of the selected motifs was specific for each cytoplasmic domain, we
performed binding assays comparing the interaction of individual phage motifs with 81,
B3, or B5 cytoplasmic domain fusion proteins (Table 3). We have determined by ELISA
with anti-GST antibodies that the three proteins can be coated onto plastic at equivalent
efficiency, and thus that the differences in binding do not reflect differences in coating
concentrations. As shown in Figures 3A and 3B, both the 83- and 85-selected phage
interact preferably with the proteins on which they were originally selected. None of the
phage tested seem to bind strongly to the 81 cytoplasmic domain.
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Figure 2. Binding of 85
cytoplasmic domain-
selected phage to
immobilized proteins.
GST fusion proteins or
GST alone were coated
on microtiter wells at 10
pg/ml and used to bind
each phage expressing
the peptides shown in
Table 3 (each phage is
identified by the peptide
sequence it displays).
(A) VVISYSMPD; (B)
KQFSYRYLL; (C)
CYIWPDSGLC; (D)
CEPYWDGWEC (E)
DEEGYYMMR. The
data represent the mean
colony counts from
triplicate wells, with
standard error less than
10% of the mean.

Table 3. Binding of 83 and 85 cytoplasmic domain-selected phage to immobilized proteins.

B3 MOTIF B3/p1 RATIO B3/35 RATIO B3/GST RATIO R5 MOTIF B5/p1 RATIO (5/83 RATIO PS/GST RATIO
CX, Library Pool Cyclic Libraries

CEQRQTQEGC 3.6 24 8.3 CYIWPDSGLC 7 12 3.2
CARLEVLLPC 22 1.4 2.8 CEPYWDGWEFC 64 54 3.2
X,YX, Library X,YX, Library

SDNRYIGSW 54 9.5 15.1 DEEGYYMMR 1.2 27 1.4
GLDTYRGSP 6.4 6.5 10.4 DWFSYYEL 1.7 15 1.2
YEWWYWSWA 21 1.3 2.2 VVISYSMPD 1.4 9.4 36.2
YDWWYPWSW 10.6 1.7 5.6 KQFSYRYLL 1.2 10.2

SDWYYPWSW 1.9 1.1 21

Pool Cyclic Libraries

CLRQSYSYNC 11 1.5 24

CFQNRC 1.7 8 3.1

Characterization of the synthetic peptides corresponding to the sequences displayed by
the integrin-cytoplasmic domain-binding phage.
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We selected specific phage for further studies on the basis of their binding properties.
We used synthetic peptides corresponding to the sequence displayed by the phage to
perform inhibitory studies. This assay is important because it determines whether phage
binding is entirely mediated by the peptide displayed by the phage. As expected, we
found that the synthetic peptides can inhibit the binding of the corresponding phage in a
dose-dependent manner (Figures 4A and 4B). A control peptide containing unrelated
amino acids had no effect on phage binding when tested at identical concentrations.

A) CEQRQTQEGC B) GLDTYRGSP C) SDNRYIGSW
160 700 300
M8 CEQRQTQEGC 8 GLDTYRGSP W SDNRYIGSW
EZIFdTet E7 FdTet ZAFdTet
1261 6001
226
g 500 -
£ 100+ 3 $
2 5 5
8 g 400 3
s o o
i 76 4 5 ~3- 150 -]
£ £ 300 H
S [3 [3
z g 2 2
200 -
76
% 100
0 0 0
Gst-81 Gst-83 Gst-86 GST BSA Gst-81 Gst-83 Gst-e6 GST BSA Gst-B1 Gst-B3 Gst-86 GST BSA

Figure 3A. Binding of B3 cytoplasmic domain-selected phage to $$1, 3 and 5 immobilized proteins. GST fusion
proteins or GST alone were coated on microtiter wells at 10 ug/ml and used to bind each phage expressing the peptides
shown in Table 3 (each phage is identified by the peptide sequence it displays). The data represent the mean colony
counts from triplicate wells with standard error less than10% of the mean. Fd-tet insertless phage was used as a
negative control.

A) CEPYWDGWFC B) CYIWPDSGLC C) VVISYSMPD
800 1200 1600
ma CEQRQTQEGC = CYIWPDSGLC m VVISYSMPD
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z z z 600
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0 ! ! 0
Gst-81 Gst-83 Gst-86 GST BSA Gst-81 Gst-83 Gst-85 GST BSA Gst-81 Gst-B3 Gst-86 GST BSA

Figure 3B. Binding of 885 cytoplasmic domain-selected phage to 81, 83 and 85 immobilized proteins. GST fusion
proteins or GST alone were coated on microtiter wells at 10 pg/ml and used to bind each phage expressing the peptides
shown in Table 3 (each phage is identified by the peptide sequence it displays). The data represent the mean colony
counts from triplicate wells, with standard error less than 10% of the mean. Fd-tet insertless phage was used as a
negative control.
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Figure 4A. Binding of the cytoplasmic-domain binding phage to 33 immobilized protein and inhibition with the
synthetic peptide. Phage were incubated on wells coated with GST-83cyto in the presence of increasing
concentrations of the corresponding synthetic peptide or a control peptide. The data represent the mean colony counts
from triplicate wells, with standard error less than 10% of the mean.

VVISYSMPD

Figure 4B. Binding of

the cytoplasmic-domain binding phage

to 85 immobilized protein and inhibition

with the synthetic peptide. Phage were

incubated on wells coated with GST-B5cyto in

the presence of increasing concentrations of the
corresponding synthetic peptide or a control peptide.
The data represent the mean colony counts from
triplicate wells, with standard error less than 10%
of the mean.

—8— VVISYSMPD pop
--0-- Control pep

Peptide Concentration (yg/well)

Phosphorylation events modulate the
interaction of the selected peptides with cytoplasmic domains

Events involving phosphorylation are important in regulating signal transduction. We
used the phage display system to evaluate the effect of tyrosine phosphorylation at two
levels: (i) recombinant fusion proteins containing 83 or B85 cytoplasmic domains were
used for panning of phage libraries displaying tyrosine-containing peptides or (ii) the
cytoplasmic domains themselves were phosphorylated before phage selection was
performed. Experiments were performed to investigate the capacity of specific tyrosine
kinases to modulate the interaction of the selected peptides with the cytoplasmic

10
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domains. This strategy is interesting because it can reveal the effect of phosphorylation
on their binding properties at different levels.

The results obtained in the panning of phage libraries displaying tyrosine-containing
peptides are shown in Table 4.

Table 4. Sequences displayed by phosphorylated phage binding to integrin cytoplasmic domains.

PEPTIDE MOTIF Phosp/Unphosp B3 or f§/GST 3 or S/BSA
B3 cytoplasmic domain

GGGSYRHVE 13.2 1.5 5.3
RAILYRLAN 2.8 1.3 20
MLLGYRFEK 25 3.5 2.7

B5 cytoplasmic domain

TMLRYTVRL 14.3 34 2.2
TMLRYFMFP 4.2 23 3.8
TLRKYFHSS 3.8 3.8 15.2
TLRKYFHSS 1.8 5.6 7.3

Randomly selected clones from rounds III and IV were sequenced from X4YX4
phosphorylated library with Fyn. Amino acid sequences of the phagemid-encoded
peptides were deduced from nucleotide sequences. Table 5 shows the motifs found most
frequently after the indicated libraries were panned with 3 or 5. The ratio of binding to
B3 or B5 was calculated by dividing the number of B3 or 5 colonies by GST or BSA
colonies found after panning. The ratio of binding to B3 or 85 with phosphorylated phage
by Fyn versus unphosphorylated phage was calculated by dividing the number of
colonies found after the panning.

We also have begun to evaluate the capacity of specific tyrosine kinases to phosphorylate
isolated cytoplasmic domain-binding peptides. We investigated the effect of
phosphorylation on the affinity and specificity of the cytoplasmic domain-binding. Phage
displaying the B3 and B5 cytoplasmic domain-binding peptides were phosphorylated in
vitro as described previously (56-58). We then investigated whether phosphorylation of
the phage affected their interaction with the respective cytoplasmic domain in a phage-
binding assay. For these experiments, phage were specifically phosphorylated in vitro by
Fyn kinase. Specific phosphorylation of the tyrosine-containing peptide on the surface of
the phage was confirmed by using **P-gamma dATP in the kinase reaction and by
separating the phage pllI protein by SDS-PAGE.

After phosphorylating the phage in vitro, we found that their phosphorylation state
increased the binding affinity and specificity to the 83 integrin cytoplasmic domain
(Figures 5A and 5B). The TLRKYFHSS phage was also tested in assays that included
other GST-cytoplasmic domain fusion proteins to determine specificity (Figure 5C).

11
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Figure 5A. Binding of phage

to immobilized B3-GST after
phosphorylation. Phage were
phosphorylated with Fyn kinase.
Insertless phage were used as a control.
Phage were incubated on wells coated
with GST-B3cyto. The data represent
the mean colony counts from triplicate
wells, with standard error less than 10% 50
of the mean.
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Figure 5B. Binding of
phage to immobilized A) TMLRYFMFP B) TLRKYFHSS C) TMLRYTVRL
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10% of the mean.
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Figure 5C. Binding of phage to 81, 83 and B5
immobilized GST fusion proteins after TLRKYFHSS
phosphorylation. Phages were phosphorylated with Fyn B KYF-Phosp
kinase. Insertless phage was used as a control. Phage were 900 KYF+Buffer
incubated on wells coated with GST-
cytoplasmic domains. The data represent the
mean of colony counts from triplicate wells,
with standard error less than 10% of the mean.

750 —

600 —

450 -

Number of Colonies

300 —

150 —

Peptides that bind to the B3 or B5 cytoplasmic
domains after phosphorylation in vitro are 0
likely to be useful tools in understanding signal GstB1  GstBIC GstBd  GstBS5  GST
transduction regulation in the context of intact

cells. We have performed screenings using that system. We have generated interesting
data suggesting that it is possible to obtain peptides that will recognize the B3 cyto

domain exclusively after phosphorylation (Figure 6).
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Figure 6. Panning on phosphorylated GST-B3
cyto. A GST fusion protein containing the 83 B Round
cytoplasmic domain was immobilized onto microtiter Round Iil
wells at 10pg/ml before and after phosphorylation
with Fyn kinase. The CX7C phage library was used.
Bound phage were recovered after infection with K91
bacteria. Results illustrate the % of enrichment on
phosphorylated GST-83 cyto versus that of
phosphorylated GST after the second and third round
of selection. The unphosphorylated GST-83 cyto was

Enrichment in Phage Binding
w
1

used as a control. The data represent the mean of 1
duplicate wells, with standard error less than 10% of
the mean. 04

Gst-B3  GST- phosp Gst-63 Phosp

Sequence similarity of integrin binding peptides with known cytoskeletal and signaling
proteins.

Searching for sequence homology between these peptides and protein sequences found in
the database, we found that the peptides displayed by integrin cytoplasmic domain-
binding phage are similar to certain regions found within cytoskeletal proteins and
proteins involved in signal transduction. At this point, despite the difficulty of evaluating
what these similarities might mean, we plan to investigate whether they represent
potentially relevant interactions. The similarity of some of the isolated peptides to a
region of mitogen-activated protein kinase 5 (MAPKS, amino acids 227-234) is
particularly interesting. Although the molecular mechanisms involved are not firmly
identified as yet, a connection involving the MAPK cascade, cell adhesion, migration,
and proliferation has been proposed (54). We plan to pursue studies with the most
promising peptides

KEY RESEARCH ACCOMPLISHMENTS

¢ We have selected peptides that bind specifically to B3 or to B35 integrin cytoplasmic
domains. We used use recombinant fusion proteins containing 83 or 85 cytoplasmic
domains for biopanning of phage peptide libraries.

e We have investigate whether phosphorylation events can modulate the interaction of
the selected peptides with integrin cytoplasmic domains. We used recombinant fusion
proteins containing B3 or B85 cytoplasmic domains for biopanning of phage libraries
displaying tyrosine-containing peptides. The libraries were phosphorylated in vitro using
different kinases. We also studied the capacity of specific tyrosine kinases to phosphorylate
isolated cytoplasmic domain binding peptides. The effect of phosphorylation on their binding
properties were investigated.

¢ We have determined some of the biological properties of the cytoplasmic domain-
binding peptides.
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REPORTABLE OUTCOMES

A manuscript is in preparation to report the results of this project.

CONCLUSIONS

We have clearly demonstrated certain critical results that will contribute to the success of
this project.

(i) evidence of successful introduction of peptides into cells and (ii) demonstration that
the introduced peptides can affect cell function. Data addressing these issues are
compiled in a manuscript in preparation. We also developed improved and more direct
experimental strategies to complete the project.

Functional data are now available showing that the cytoplasmic domain-binding peptides
selected on B3 or B5 can indeed interfere with integrin-mediated signaling and
subsequent cellular responses (i.e., endothelial cell proliferation, and migration). We
made a major investment to commercially obtain a panel of “internalizable” versions of
our synthetic motifs found by phage screenings. These complex chimeric peptides
consist of the most selective of the B3 or 5 cytoplasmic domain-binding peptides
coupled to penetratin plus a biotin moiety to allow the peptides to be tracked once they
are inside intact cells. Our results show that these membrane-permeable forms of the
peptides (i) are indeed internalized (ii) may affect 83 and 85 post-ligand binding cellular
events and (iii) can clearly induce massive apoptosis.

Identifying signaling events characteristic of tumor cells and angiogenic vasculature will

improve our understanding of integrin biology and may suggest new therapeutic
strategies for cancer and other diseases involving angiogenesis.
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